Understanding the signal-to-noise paradox in decadal climate predictability from CMIP5 and an eddying global coupled model
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Understanding the signal-to-noise paradox in decadal climate predictability from CMIP5 and an eddying global coupled model

Filetype[PDF-6.16 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Climate Dynamics
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Recent research suggests the widespread existence of the signal-to-noise paradox in seasonal-to-decadal climate predictions. The essence of the paradox is that the signal-to-noise ratio in models can be unrealistically small and models may make better predictions of the observations than they predict themselves. The paradox highlights a potentially serious issue with model predictions as previous studies may underestimate the limit of predictability. The focus of this paper is two-fold: the first objective is to re-examine decadal predictability from the lens of the signal-to-noise paradox in the context of CMIP5 models. We demonstrate that decadal predictability is generally underestimated in CMIP5 models possibly due to the existence of the signal-to-noise paradox. Models underestimate decadal predictability in regions where it is likely for the paradox to exist, especially over the Tropical Atlantic Ocean and Tropical Indian Ocean and eddy-rich regions, including the Gulf Stream, Kuroshio Current, and Southern Ocean. The second objective follows from the results of the first, attempting to determine if this underestimate of decadal predictability is, at least partially, due to missing ocean mesoscale processes and features in CMIP5 models. A suite of coupled model experiments is performed with eddying and eddy-parameterized ocean component. Compared with eddy-parameterized models, the paradox is less likely to exist in eddying models, particularly over eddy-rich regions. These also happen to be regions where increased decadal predictability is identified. We hypothesize that this enhanced predictability is due to the enhanced vertical connectivity in the ocean. The presence of mesoscale ocean features and associated vertical connectivity significantly influence decadal variability, predictability, and the signal-to-noise paradox.
  • Keywords:
  • Source:
    Climate Dynamics, 56(9), 2895-2913
  • DOI:
  • Document Type:
  • Funding:
  • Rights Information:
    Accepted Manuscript
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1