i
Enhanced Snow Absorption and Albedo Reduction by Dust‐Snow Internal Mixing: Modeling and Parameterization
-
2019
-
-
Source: Journal of Advances in Modeling EarthSystems,11
Details:
-
Journal Title:Journal of Advances in Modeling Earth Systems
-
Personal Author:
-
NOAA Program & Office:
-
Description:We extend a stochastic aerosol-snow albedo model to explicitly simulate dust internally/externally mixed with snow grains of different shapes and for the first time quantify the combined effects of dust-snow internal mixing and snow nonsphericity on snow optical properties and albedo. Dust-snow internal/external mixing significantly enhances snow single-scattering coalbedo and absorption at wavelengths of <1.0 mu m, with stronger enhancements for internal mixing (relative to external mixing) and higher dust concentrations but very weak dependence on snow size and shape variabilities. Compared with pure snow, dust-snow internal mixing reduces snow albedo substantially at wavelengths of <1.0 mu m, with stronger reductions for higher dust concentrations, larger snow sizes, and spherical (relative to nonspherical) snow shapes. Compared to internal mixing, dust-snow external mixing generally shows similar spectral patterns of albedo reductions and effects of snow size and shape. However, relative to external mixing, dust-snow internal mixing enhances the magnitude of albedo reductions by 10%-30% (10%-230%) at the visible (near-infrared) band. This relative enhancement is stronger as snow grains become larger or nonspherical, with comparable influences from snow size and shape. Moreover, for dust-snow external and internal mixing, nonspherical snow grains have up to similar to 45% weaker albedo reductions than spherical grains, depending on snow size, dust concentration, and wavelength. The interactive effect of dust-snow mixing state and snow shape highlights the importance of accounting for these two factors concurrently in snow modeling. For application to land/climate models, we develop parameterizations for dust effects on snow optical properties and albedo with high accuracy.
-
Keywords:
-
Source:Journal of Advances in Modeling EarthSystems,11
-
DOI:
-
Document Type:
-
Funding:
-
Rights Information:CC BY
-
Compliance:Submitted
-
Main Document Checksum:
-
Download URL:
-
File Type: