Asymmetric Modulation of ENSO Teleconnections by the Interdecadal Pacific Oscillation
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields



Publication Date Range:


Document Data


Document Type:






Clear All

Query Builder

Query box

Clear All

For additional assistance using the Custom Query please check out our Help Page


Asymmetric Modulation of ENSO Teleconnections by the Interdecadal Pacific Oscillation

Filetype[PDF-11.55 MB]

Select the Download button to view the document
This document is over 5mb in size and cannot be previewed


  • Journal Title:
    Journal of Climate
  • Description:
    Remote influences of ENSO are known to vary with different phases of the interdecadal Pacific oscillation (IPO). Here, observational and reanalysis data from 1920 to 2014 are analyzed to present a global synthesis of the IPO’s modulation on ENSO teleconnections, followed by a modeling investigation. Regressions of surface air temperature T, precipitation P, and atmospheric circulations upon IPO and ENSO indices reveal substantial differences between ENSO and IPO teleconnections to regional T and P in terms of spatial pattern, magnitude, and seasonality. The IPO’s modulation on ENSO teleconnections asymmetrically varies with both IPO and ENSO phases. For a given ENSO phase, IPO’s modulations are not symmetric between its two phases; for a given IPO SST anomaly, its influence depends on whether it is superimposed on El Niño, La Niña, or neutral ENSO. The IPO modulations are linked to the atmospheric response to tropical SST anomalies, manifested in the local Hadley circulation and the local Walker circulation at low latitudes and the Rossby wave train in the extratropics, including the Pacific–North American (PNA) pattern in the Northern Hemisphere. A set of numerical experiments using CAM5 forced with different combinations of the IPO- and ENSO-related SSTs further shows that the asymmetric modulation arises from the nonlinear Clausius–Clapeyron relation, so that the atmospheric circulation response to the same IPO-induced SST departure is larger during a warm rather than a cold ENSO phase, and the response to a warm IPO state is larger than that to a cold IPO state. The asymmetry depends primarily on the tropical Pacific mean state and tropical SST anomalies and secondarily on extratropical SST anomalies.
  • Source:
    J. Clim. (2018) 31(18): 7337–7361
  • Document Type:
  • Rights Information:
  • Compliance:
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

Related Documents