Dynamics and predictability of secondary eyewall formation in sheared tropical cyclones
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Dynamics and predictability of secondary eyewall formation in sheared tropical cyclones

Filetype[PDF-5.64 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Journal of Advances in Modeling Earth Systems
  • Description:
    This study examines the predictability and dynamics of tropical cyclone (TC) secondary eyewall formation (SEF), eyewall replacement cycles (ERC), and intensity changes under moderate environmental shear through convection-permitting ensemble simulations. Even with the same environmental shear, the TC intensity changes during formation, rapid intensification, and SEF/ERC can be extremely sensitive to small, unobservable, random initial condition uncertainties, or computer's truncation error due to the chaotic nature of moist convection. Through composite analysis of five ensemble members with similar clear SEF/ERC and diagnostics with a nonlinear boundary layer (BL) model, we identify several key factors in the SEF/ERC process: (1) fast expansion of outer wind fields and changing inertial stability through shear-induced peripheral convection outside of the primary eyewall, (2) downward building and axisymmetrization of the primary (outer) rainband due to enhanced inertial stability and positive feedback between BL and outer convection, (3) establishment of the secondary eyewall along with moat formation that is facilitated by compensating subsidence from the primary eyewall, and (4) weakening and eventual replacement of the original primary eyewall by the strengthening secondary eyewall. It is also seen from the partial ERC cases that the preexisting rainband can be of great importance to the later development of SEF. Diagnosis with the nonlinear BL model shows that the location and relative strengths of the diagnosed frictional updrafts closely match those in the ensemble simulation of the ERC case, suggesting that the boundary layer convergence substantially influences the location of the convection in both eyewalls there.
  • Source:
    Journal of Advances in Modeling Earth Systems 9(1), 89-112, 2017
  • Document Type:
  • Rights Information:
    CC BY-NC-ND
  • Compliance:
    Submitted
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26