The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
Direct Assimilation of Radar Reflectivity Data Using 3DVAR: Treatment of Hydrometeor Background Errors and OSSE Tests
-
2018
-
-
Source: Monthly Weather Review, 147(1), 17-29
Details:
-
Journal Title:Monthly Weather Review
-
Personal Author:
-
NOAA Program & Office:
-
Description:Despite the well-known importance of background error covariance in data assimilation, not much study has been focused on its impact on the assimilation of radar reflectivity within a three-dimensional variational (3DVar) framework. In this study, it is shown that unphysical analysis increments of hydrometeors are produced when using vertically homogeneous background error variance. This issue cannot be fully solved by using the so-called hydrometeor classification in the reflectivity observation operator. Alternatively, temperature-dependent background error profiles for hydrometeor control variables are proposed. With such a treatment, the vertical background error profiles are specified to be temperature dependent, allowing for more physical partitioning of radar-observed precipitation information among the liquid and ice hydrometeors. The 3DVar analyses using our treatment are compared with those using constant background error or “hydrometeor classification” through observing system simulation experiments with a simulated supercell storm. Results show that 1) 3DVar with constant hydrometeor background errors produces unphysical rainwater at the high levels and unphysical snow at the low levels; 2) the hydrometeor classification approach reduces unphysical rainwater and snow at those levels, but the analysis increments are still unphysically spread in the vertical by the background error covariance when the vertically invariant background errors are used; and 3) the temperature-dependent background error profiles enable physically more reasonable analyses of liquid and ice hydrometeors from reflectivity assimilation.
-
Keywords:
-
Source:Monthly Weather Review, 147(1), 17-29
-
DOI:
-
Document Type:
-
Funding:
-
Rights Information:Other
-
Compliance:Submitted
-
Main Document Checksum:
-
Download URL:
-
File Type: