Direct Assimilation of Radar Reflectivity Data Using 3DVAR: Treatment of Hydrometeor Background Errors and OSSE Tests
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Direct Assimilation of Radar Reflectivity Data Using 3DVAR: Treatment of Hydrometeor Background Errors and OSSE Tests

Filetype[PDF-946.39 KB]



Details:

  • Journal Title:
    Monthly Weather Review
  • Description:
    Despite the well-known importance of background error covariance in data assimilation, not much study has been focused on its impact on the assimilation of radar reflectivity within a three-dimensional variational (3DVar) framework. In this study, it is shown that unphysical analysis increments of hydrometeors are produced when using vertically homogeneous background error variance. This issue cannot be fully solved by using the so-called hydrometeor classification in the reflectivity observation operator. Alternatively, temperature-dependent background error profiles for hydrometeor control variables are proposed. With such a treatment, the vertical background error profiles are specified to be temperature dependent, allowing for more physical partitioning of radar-observed precipitation information among the liquid and ice hydrometeors. The 3DVar analyses using our treatment are compared with those using constant background error or “hydrometeor classification” through observing system simulation experiments with a simulated supercell storm. Results show that 1) 3DVar with constant hydrometeor background errors produces unphysical rainwater at the high levels and unphysical snow at the low levels; 2) the hydrometeor classification approach reduces unphysical rainwater and snow at those levels, but the analysis increments are still unphysically spread in the vertical by the background error covariance when the vertically invariant background errors are used; and 3) the temperature-dependent background error profiles enable physically more reasonable analyses of liquid and ice hydrometeors from reflectivity assimilation.
  • Source:
    Monthly Weather Review, 147(1), 17-29
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Submitted
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26