i
Interlaboratory comparison of δ13C and δD measurements of atmospheric CH4 for combined use of data sets from different laboratories
-
2018
-
-
Source: Atmos. Meas. Tech., 11, 1207–1231, 2018
Details:
-
Journal Title:Atmospheric Measurement Techniques
-
Personal Author:
-
NOAA Program & Office:
-
Description:We report results from a worldwide interlaboratory comparison of samples among laboratories that measure (or measured) stable carbon and hydrogen isotope ratios of atmospheric CH4 (δ13C-CH4 and δD-CH4). The offsets among the laboratories are larger than the measurement reproducibility of individual laboratories. To disentangle plausible measurement offsets, we evaluated and critically assessed a large number of intercomparison results, some of which have been documented previously in the literature. The results indicate significant offsets of δ13C-CH4 and δD-CH4 measurements among data sets reported from different laboratories; the differences among laboratories at modern atmospheric CH4 level spread over ranges of 0.5 ‰ for δ13C-CH4 and 13 ‰ for δD-CH4. The intercomparison results summarized in this study may be of help in future attempts to harmonize δ13C-CH4 and δD-CH4 data sets from different laboratories in order to jointly incorporate them into modelling studies. However, establishing a merged data set, which includes δ13C-CH4 and δD-CH4 data from multiple laboratories with desirable compatibility, is still challenging due to differences among laboratories in instrument settings, correction methods, traceability to reference materials and long-term data management. Further efforts are needed to identify causes of the interlaboratory measurement offsets and to decrease those to move towards the best use of available δ13C-CH4 and δD-CH4 data sets.
-
Keywords:
-
Source:Atmos. Meas. Tech., 11, 1207–1231, 2018
-
DOI:
-
Document Type:
-
Rights Information:CC BY
-
Compliance:Submitted
-
Main Document Checksum:
-
Download URL:
-
File Type: