U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

Assimilation of wind speed and direction observations: results from real observation experiments



Details

  • Journal Title:
    Tellus A: Dynamic Meteorology and Oceanography
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The assimilation of wind observations in the form of speed and direction (asm_sd) by the Weather Research and Forecasting Model Data Assimilation System (WRFDA) was performed using real data and employing a series of cycling assimilation experiments for a 2-week period, as a follow-up for an idealised post hoc assimilation experiment. The satellite-derived Atmospheric Motion Vectors (AMV) and surface dataset in Meteorological Assimilation Data Ingest System (MADIS) were assimilated. This new method takes into account the observation errors of both wind speed (spd) and direction (dir), and WRFDA background quality control (BKG-QC) influences the choice of wind observations, due to data conversions between (u,v) and (spd, dir). The impacts of BKG-QC, as well as the new method, on the wind analysis were analysed separately. Because the dir observational errors produced by different platforms are not known or tuned well in WRFDA, a practical method, which uses similar assimilation weights in comparative trials, was employed to estimate the spd and dir observation errors. The asm_sd produces positive impacts on analyses and short-range forecasts of spd and dir with smaller root-mean-square errors than the u,v-based system. The bias of spd analysis decreases by 54.8%. These improvements result partly from BKG-QC screening of spd and dir observations in a direct way, but mainly from the independent impact of spd (dir) data assimilation on spd (dir) analysis, which is the primary distinction from the standard WRFDA method. The potential impacts of asm_sd on precipitation forecasts were evaluated. Results demonstrate that the asm_sd is able to indirectly improve the precipitation forecasts by improving the prediction accuracies of key wind-related factors leading to precipitation (e.g. warm moist advection and frontogenesis).
  • Keywords:
  • Source:
    Tellus A: Dynamic Meteorology and Oceanography, 67(1)
  • DOI:
  • Document Type:
  • Rights Information:
    CC BY
  • Compliance:
    Submitted
  • Main Document Checksum:
    urn:sha-512:dee835fe50f1ddaca3df61564079454dde131bc1fa66acb9a6dcf0635156b0cfb40005ddc045d19cf72e3f1b83dfc625a3643322e402991379d44c7113895736
  • Download URL:
  • File Type:
    Filetype[PDF - 3.03 MB ]
ON THIS PAGE

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.