Restoration Scaling Approaches to Addressing Ecological Injury: The Habitat-Based Resource Equivalency Method
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.


This Document Has Been Replaced By:



This Document Has Been Retired


Up-to-date Information

This is the latest update:

Restoration Scaling Approaches to Addressing Ecological Injury: The Habitat-Based Resource Equivalency Method
  • Published Date:


  • Source:
    Environ Manage. 2020; 65(2): 161–177.
Filetype[PDF-1.33 MB]

  • Description:
    Natural resource trustee agencies must determine how much, and what type of environmental restoration will compensate for injuries to natural resources that result from releases of hazardous substances or oil spills. To fulfill this need, trustees, and other natural resource damage assessment (NRDA) practitioners have relied on a variety of approaches, including habitat equivalency analysis (HEA) and resource equivalency analysis (REA). The purpose of this paper is to introduce the Habitat-Based Resource Equivalency Method (HaBREM), which integrates REA’s reproducible injury metrics and population modeling with HEA’s comprehensive habitat approach to restoration. HaBREM is intended to evaluate injury and restoration using organisms that use the habitat to represent ecological habitat functions. This paper seeks to expand and refine the use of organism-based metrics (biomass-based REA), providing an opportunity to integrate sublethal injuries to multiple species, as well as the potential to include error rates for injury and restoration parameters. Applied by NRDA practitioners in the appropriate context, this methodology can establish the relationship between benefits of compensatory restoration projects and injuries to plant or animal species within an affected habitat. HaBREM may be most effective where there are appropriate data supporting the linkage between habitat and species gains (particularly regionally specific habitat information), as well as species-specific monitoring data and predictions on the growth, density, productivity (i.e., rate of generation of biomass or individuals), and age distributions of indicator species.
  • Pubmed ID:
  • Pubmed Central ID:
  • Document Type:
  • Main Document Checksum:
  • File Type:
  • Supporting Files:
    No Additional Files
No Related Documents.

You May Also Like: