i
Analysis of a Case of Supercellular Convection over Bulgaria: Observations and Numerical Simulations
-
2019
-
-
Source: Atmosphere 2019, 10(9), 486.
Details:
-
Journal Title:Atmosphere
-
Personal Author:
-
NOAA Program & Office:
-
Description:A long-lived supercell developed in Northwest Bulgaria on 15 May 2018 and inflicted widespread damage along its track. The first part of this article presents a detailed overview of the observed storm evolution. Doppler radar observations reveal that the storm acquired typical supercellular signatures and maintained reflectivity values in excess of 63 dBZ for more than 4 h. The thunderstorm was also analyzed through lightning observations that highlighted important characteristics of the overall supercell dynamics. In its second part, the study investigates the predictability of the severe weather outbreak. In the medium forecast ranges, the global European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble indicated the presence of favorable conditions for the development of deep moist convection 4 days prior to the event. A set of three convection-allowing ensemble simulations also demonstrated that the practical predictability of the supercell was approximately 12 h, which is considerably higher than some previously reported estimates. Nevertheless, the skill of the convective forecasts appears to be limited by the presence of typical model errors, such as the timing of convection initiation and the development of spurious convective activity. The relevance of these errors to the optimal ensemble size and to the design of future convection-allowing numerical weather prediction (NWP) systems is further discussed.
-
Keywords:
-
Source:Atmosphere 2019, 10(9), 486.
-
DOI:
-
Document Type:
-
Funding:
-
Place as Subject:
-
Rights Information:CC BY
-
Compliance:Submitted
-
Main Document Checksum:
-
Download URL:
-
File Type: