Predictability of Idealized Thunderstorms in Buoyancy–Shear Space
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields



Publication Date Range:


Document Data


Document Type:






Clear All

Query Builder

Query box

Clear All

For additional assistance using the Custom Query please check out our Help Page


Predictability of Idealized Thunderstorms in Buoyancy–Shear Space

Filetype[PDF-2.93 MB]


  • Journal Title:
    Journal of the Atmospheric Sciences
  • Personal Author:
  • Description:
    Thunderstorms are difficult to predict because of their small length scale and fast predictability destruction. A cell’s predictability is constrained by properties of the flow in which it is embedded (e.g., vertical wind shear), and associated instabilities (e.g., convective available potential energy). To assess how predictability of thunderstorms changes with environment, two groups of 780 idealized simulations (each using a different microphysics scheme) were performed over a range of buoyancy and shear profiles. Results were not sensitive to the scheme chosen. The gradient in diagnostics (updraft speed, storm speed, etc.) across shear–buoyancy phase space represents sensitivity to small changes in initial conditions: a proxy for inherent predictability. Storm evolution is split into two groups, separated by a U-shaped bifurcation in phase space, comprising 1) cells that continue strengthening after 1 h versus 2) those that weaken. Ensemble forecasts in regimes near this bifurcation are hence expected to have larger uncertainty, and adequate dispersion and reliability is essential. Predictability loss takes two forms: (i) chaotic error growth from the largest and most powerful storms, and (ii) tipping points at the U-shaped perimeter of the stronger storms. The former is associated with traditional forecast error between corresponding grid points, and is here counterintuitive; the latter is associated with object-based error, and matches the mental filtering performed by human forecasters for the convective scale.
  • Source:
    J. Atmos. Sci. (2019) 76 (9): 2653–2672.
  • Document Type:
  • Rights Information:
  • Compliance:
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at

Version 3.21