Surface ozone response to satellite-constrained NOx emission adjustments and its implications
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Add terms to the query box

Query box

Help
Clear All
i

Surface ozone response to satellite-constrained NOx emission adjustments and its implications

Filetype[PDF-1.05 MB]



Details:

  • Journal Title:
    Environmental Pollution
  • Description:
    Both surface and satellite observations have shown a decrease in NOx emissions in East Asian countries in recent years. In order to reflect the recent NOx emission reduction and to investigate its impact on surface O3 concentrations in Asian megacities, we adjusted two bottom-up regional emission inventories of which base years are 2006 (E2006) and 2010 (E2010), respectively. We applied direct and relative emission adjustments to both E2006 and E2010 to constrain NOx emissions using OMI NO2 vertical column densities. Except for the relative emission adjustment with E2006, modeling results with adjusted emissions exhibit that NOx emissions over East Asian megacities (Beijing, Shanghai, Seoul, and Tokyo) in the bottom-up inventories are generally overestimated. When the direct emission adjustment is applied to E2006, model biases in the Seoul Metropolitan Area (SMA), South Korea are reduced from 24 ppb to 2 ppb for NOx (=NO+NO2) and from −9 ppb to 0 ppb for O3. In addition, NO2 model biases in Beijing and Shanghai in China are reduced from 8 ppb to 18 ppb–0 ppb and 1 ppb, respectively. Daily maximum 8-h average O3 model biases over the same places are decreased by 8 ppb and 14 ppb. Further analyses suggest that the reduction in domestic South Korean NOx emissions plays a significant role in increasing O3 concentrations in SMA. We conclude that the current strong drive to reduce NOx emissions as part of the strategy to lower particulate matter concentrations in South Korea can account for increased O3 concentrations in recent years and suggest that more aggressive NOx emissions will be necessary soon.
  • Source:
    Environmental Pollution, 258
  • Document Type:
  • Rights Information:
    CC BY
  • Compliance:
    Submitted
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

Version 3.18