The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
Changes in the ozone chemical regime over the contiguous United States inferred by the inversion of NOx and VOC emissions using satellite observation
-
2022
-
-
Source: Atmospheric Research, 270, 106076
Details:
-
Journal Title:Atmospheric Research
-
Personal Author:
-
NOAA Program & Office:
-
Description:To investigate changes in the ozone (O3) chemical production regime over the contiguous United States (CONUS) with accurate knowledge of concentrations of its precursors, we applied an inverse modeling technique with Ozone Monitoring Instrument (OMI) tropospheric nitrogen dioxide (NO2) and total formaldehyde (HCHO) retrieval products in the summers of 2011, 2014, and 2017, years in which United States National Emission Inventory were based. The inclusion of dynamic chemical lateral boundary conditions and lightning-induced nitric oxide emissions significantly account for the contribution of background sources in the free troposphere. Satellite-constrained nitrogen oxide (NOx) and non-methane volatile organic compounds (NMVOCs) emissions mitigate the discrepancy between satellite and modeled columns: the inversion suggested 2.33–2.84 (1.07–1.34) times higher NOx over the CONUS (over urban regions) and 0.28–0.81 times fewer NMVOCs emissions over the southeastern United States. The model-derived HCHO/NO2 column ratio shows gradual spatial changes in the O3 production regime near urban cores relative to previously defined threshold values representing NOx and VOC sensitive conditions. We also found apparent shifts from the NOx-saturated regime to the transition regime (or the transition regime to the NOx-limited regime) over the major cities in the western United States. In contrast, rural areas, especially in the east-southeastern United States, exhibit a decreased HCHO/NO2 column ratio by −1.30 ± 1.71 with a reduction in HCHO column primarily driven by meteorology, becoming sensitive to VOC emissions. Results show that incorporating satellite observations into numerical modeling could help policymakers implement appropriate emission control policies for O3 pollution.
-
Keywords:
-
Source:Atmospheric Research, 270, 106076
-
DOI:
-
ISSN:0169-8095
-
Format:
-
Publisher:
-
Document Type:
-
License:
-
Rights Information:CC BY-NC-ND
-
Compliance:Library
-
Main Document Checksum:
-
Download URL:
-
File Type: