Meteorological Differences Characterizing Tornado Outbreak Forecasts of Varying Quality
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Meteorological Differences Characterizing Tornado Outbreak Forecasts of Varying Quality

Filetype[PDF-5.22 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Atmosphere
  • Description:
    Tornado outbreaks (TOs) are a major hazard to life and property for locations east of the Rocky Mountains. Improving tornado outbreak (TO) forecasts will help minimize risks associated with these major events. In this study, we present a methodology for quantifying TO forecasts of varying quality, based on Storm Prediction Center convective outlook forecasts, and provide synoptic and mesoscale composite analyses to identify important features characterizing these events. Synoptic-scale composites from the North American Regional Reanalysis (NARR) are presented for TO forecasts at three forecast quality levels, H-class (high quality), M-class (medium quality), and L-class (low quality), as well as false alarm TO forecasts. H-class and false alarm TO forecasts share many meteorological similarities, particularly in the synoptic-scale, though false alarm events show less well-defined low-level synoptic-scale features. M- and L-class TOs present environments dominated by mesoscale thermodynamic processes (particularly dryline structures), contrasting H-class TOs which are clearly synoptically driven. Simulations of these composites reveal higher instability in M- and L-class TOs that lack key kinematic structures that characterize H-class TOs. The results presented offer important forecast feedback that can help inform future TO predictions and ultimately produce improved TO forecast quality.
  • Source:
    Atmosphere 2019, 10(1), 16.
  • Document Type:
  • Rights Information:
    CC BY
  • Compliance:
    Submitted
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.21