Origins of Vorticity in a Simulated Tornadic Mesovortex Observed during PECAN on 6 July 2015
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.


This Document Has Been Replaced By:



This Document Has Been Retired


Up-to-date Information

This is the latest update:

Origins of Vorticity in a Simulated Tornadic Mesovortex Observed during PECAN on 6 July 2015
  • Published Date:


  • Source:
    Mon. Wea. Rev. (2019) 147 (1): 107–134.
Filetype[PDF-7.86 MB]

This document cannot be previewed automatically as it exceeds 5 MB
Please click the thumbnail image to view the document.
Origins of Vorticity in a Simulated Tornadic Mesovortex Observed during PECAN on 6 July 2015
  • Description:
    To better understand and forecast nocturnal thunderstorms and their hazards, an expansive network of fixed and mobile observing systems was deployed in the summer of 2015 for the Plains Elevated Convection at Night (PECAN) field experiment to observe low-level jets, convection initiation, bores, and mesoscale convective systems. On 5–6 July 2015, mobile radars and ground-based surface and upper-air profiling systems sampled a nocturnal, quasi-linear convective system (QLCS) over South Dakota. The QLCS produced several severe wind reports and an EF-0 tornado. The QLCS and its environment leading up to the mesovortex that produced this tornado were well observed by the PECAN observing network. In this study, observations from radiosondes, Doppler radars, and aircraft are assimilated into an ensemble analysis and forecasting system to analyze this event with a focus on the development of the observed tornadic mesovortex. All ensemble members simulated low-level mesovortices with one member in particular generating two mesovortices in a manner very similar to that observed. Forecasts from this member were analyzed to examine the processes increasing vertical vorticity during the development of the tornadic mesovortex. Cyclonic vertical vorticity was traced to three separate airstreams: the first from southerly inflow that was characterized by tilting of predominantly crosswise horizontal vorticity along the gust front, the second from the north that imported streamwise horizontal vorticity directly into the low-level updraft, and the third from a localized downdraft/rear-inflow jet in which the horizontal vorticity became streamwise during descent. The cyclonic vertical vorticity then intensified rapidly through intense stretching as the parcels entered the low-level updraft of the developing mesovortex.
  • Document Type:
  • Main Document Checksum:
  • File Type:
  • Supporting Files:
    No Additional Files
No Related Documents.

You May Also Like: