Maximizing the Information Content of Ill-Posed Space-Based Measurements Using Deterministic Inverse Method
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Maximizing the Information Content of Ill-Posed Space-Based Measurements Using Deterministic Inverse Method

Filetype[PDF-5.50 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Remote Sensing
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    For several decades, operational retrievals from spaceborne hyperspectral infrared sounders have been dominated by stochastic approaches where many ambiguities are pervasive. One major drawback of such methods is their reliance on treating error as definitive information to the retrieval scheme. To overcome this drawback and obtain consistently unambiguous retrievals, we applied another approach from the class of deterministic inverse methods, namely regularized total least squares (RTLS). As a case study, simultaneous simulated retrieval of ozone (O3) profile and surface temperature (ST) for two different instruments, Cross-track Infrared Sounder (CrIS) and Tropospheric Emission Spectrometer (TES), are considered. To gain further confidence in our approach for real-world situations, a set of ozonesonde profile data are also used in this study. The role of simulation-based comparative assessment of algorithms before application on remotely sensed measurements is pivotal. Under identical simulation settings, RTLS results are compared to those of stochastic optimal estimation method (OEM), a very popular method for hyperspectral retrievals despite its aforementioned fundamental drawback. Different tweaking of error covariances for improving the OEM results, used commonly in operations, are also investigated under a simulated environment. Although this work is an extension of our previous work for H2O profile retrievals, several new concepts are introduced in this study: (a) the information content analysis using sub-space analysis to understand ill-posed inversion in depth; (b) comparison of different sensors for same gas profile retrieval under identical conditions; (c) extended capability for simultaneous retrievals using two classes of variables; (d) additional stabilizer of Laplacian second derivative operator; and (e) the representation of results using a new metric called “information gain”. Our findings highlight issues with OEM, such as loss of information as compared to a priori knowledge after using measurements. On the other hand, RTLS can produce “information gain” of ~40–50% deterministically from the same set of measurements.
  • Keywords:
  • Source:
    Remote Sens. (Basel); 10(7): 1-23
  • DOI:
  • Pubmed Central ID:
    PMC6800693
  • Document Type:
  • Rights Information:
    CC BY
  • Compliance:
    PMC
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1