New generation of U.S. satellite microwave sounder achieves high radiometric stability performance for reliable climate change detection
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.
 
 
i

Superseded

This Document Has Been Replaced By:

i

Retired

This Document Has Been Retired

i

Up-to-date Information

This is the latest update:

New generation of U.S. satellite microwave sounder achieves high radiometric stability performance for reliable climate change detection
  • Published Date:

    2018

  • Source:
    Science Advances 4(10), 2018
Filetype[PDF-868.15 KB]


Details:
  • Description:
    Observations from the satellite microwave sounders play a vital role in measuring the long-term temperature trends for climate change monitoring. Changes in diurnal sampling over time and calibration drift have been themain sources of uncertainties in the satellite-measured temperature trends. We examine observations from the first of a series of U.S. new generation of microwave sounder, the Advanced Technology Microwave Sounder (ATMS), which has been flying onboard the National Oceanic and Atmospheric Administration (NOAA)/NASA Suomi National Polar-orbiting Partnership (SNPP) environmental satellite since late 2011. The SNPP satellite has a stable afternoon orbit that has close to the same local observation time as NASA's Aqua satellite that has been carrying the heritage microwave sounder, the Advanced Microwave Sounding Unit-A (AMSU-A), from 2002 until the present. The similar overpass timing naturally removes most of their diurnal differences. In addition, direct comparison of temperature anomalies between the two instruments shows little or no relative calibration drift for most channels. Our results suggest that both SNPP/ATMS and Aqua/AMSU-A instruments have achieved absolute stability in the measured atmospheric temperatures within 0.04 K per decade. This uncertainty is small enough to allow reliable detection of the temperature climate trends and help to resolve debate on relevant issues. We also analyze AMSU-A observations onboard the European MetOp-A satellite that has a stable morning orbit 8 hours apart from the SNPP overpass time. Their comparison reveals large asymmetric trends between day and night in the lower-and mid-tropospheric temperatures over land. This information could help to improve climate data records for temperature trend detection with improved accuracy. The SNPP satellite will be followed by four NOAA operational Joint Polar Satellite System (JPSS) satellites, providing accurate and stable measurement for decades to come. The primary mission of JPSS is for weather forecasting. Now, with the added feature of stable orbits, JPSS observations can also be used to monitor changes in climate with much lower uncertainty than the previous generation of NOAA operational satellites.
  • Pubmed Central ID:
    PMC6192683
  • Document Type:
  • Main Document Checksum:
  • File Type:
  • Supporting Files:
    No Additional Files
No Related Documents.

You May Also Like: