The Impact of Acoustic Imaging Geometry on the Fidelity of Seabed Bathymetric Models
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

The Impact of Acoustic Imaging Geometry on the Fidelity of Seabed Bathymetric Models

Filetype[PDF-17.34 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Geosciences
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Attributes derived from digital bathymetric models (DBM) are a powerful means of analyzing seabed characteristics. Those models however are inherently constrained by the method of seabed sampling. Most bathymetric models are derived by collating a number of discrete corridors of multibeam sonar data. Within each corridor the data are collected over a wide range of distances, azimuths and elevation angles and thus the quality varies significantly. That variability therefore becomes imprinted into the DBM. Subsequent users of the DBM, unfamiliar with the original acquisition geometry, may potentially misinterpret such variability as attributes of the seabed. This paper examines the impact on accuracy and resolution of the resultant derived model as a function of the imaging geometry. This can be broken down into the range, angle, azimuth, density and overlap attributes. These attributes in turn are impacted by the sonar configuration including beam widths, beam spacing, bottom detection algorithms, stabilization strategies, platform speed and stability. Superimposed over the imaging geometry are residual effects due to imperfect integration of ancillary sensors. As the platform (normally a surface vessel), is moving with characteristic motions resulting from the ocean wave spectrum, periodic residuals in the seafloor can become imprinted that may again be misinterpreted as geomorphological information.
  • Keywords:
  • Source:
    Geosciences 2018, 8(4), 109
  • DOI:
  • Document Type:
  • Funding:
  • Rights Information:
    CC BY
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1