Remote sensing estimation of surface oil volume during the 2010 Deepwater Horizon oil blowout in the Gulf of Mexico: scaling up AVIRIS observations with MODIS measurements
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields



Publication Date Range:


Document Data


Document Type:






Clear All

Query Builder

Query box

Clear All

For additional assistance using the Custom Query please check out our Help Page


Remote sensing estimation of surface oil volume during the 2010 Deepwater Horizon oil blowout in the Gulf of Mexico: scaling up AVIRIS observations with MODIS measurements

Filetype[PDF-19.66 MB]

Select the Download button to view the document
This document is over 5mb in size and cannot be previewed


  • Journal Title:
    Journal of Applied Remote Sensing
  • Description:
    The Deepwater Horizon (DWH) oil blowout in the Gulf of Mexico (GoM) led to the largest offshore oil spill in U.S. history. The accident resulted in oil slicks that covered between 10,000 and upward of 40,000 km 2 of the Gulf between April and July 2010. Quantifying the actual spatial extent of oil over such synoptic scales on an operational basis and, in particular, estimating the oil volume (or slick thickness) of large oil slicks on the ocean surface has proven to be a challenge to researchers and responders alike. This challenge must be addressed to assess and understand impacts on marine and coastal resources and to prepare a response to future spills. We estimated surface oil volume and probability of occurrence of different oil thicknesses during the DWH blowout in the GoM by combining synoptic measurements (2330-km swath) from the satellite-borne NASA Moderate Resolution Imaging Spectroradiometer (MODIS) and near-concurrent, much narrower swath (similar to 5 km) hyperspectral observations from the NASA Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). A histogram-matching approach was used to transfer AVIRIS-derived oil volume to MODIS pixel-scale dimensions, after masking clouds under both sun glint and nonglint conditions. Probability functions were used to apply the transformation to 19 MODIS images collected during the DWH event. This generated three types of MODIS oil maps: maps of surface oil volume, maps of relative oil thickness with four different classes (i.e., 0 pm, <0.08 mu m, 0.08 to 8 mu m, and >8 mu m), and maps of probability distributions of different thicknesses. The results were compared with satellite-based synthetic aperture radar measurements and evaluated with concurrent aerial photographs. Although the methods may not be ideal and the results may contain large uncertainties, the current attempt suggests that coarse-resolution optical remote sensing observations can provide estimates of relative oil thickness/volume for large oil slicks captured by satellites. (C) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License.
  • Source:
    Journal of Applied Remote Sensing, 12(2), 44.
  • Document Type:
  • Rights Information:
  • Compliance:
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at

Version 3.26