U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

Tropospheric ozonesonde profiles at long-term US monitoring sites: 2. Links between Trinidad Head, CA, profile clusters and inland surface ozone measurements



Details

  • Journal Title:
    Journal of Geophysical Research: Atmospheres
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Much attention has been focused on the transport of ozone (O-3) to the western U.S., particularly given the latest revision of the National Ambient Air Quality Standard to 70 parts per billion by volume (ppbv) of O-3. This makes quantifying the contributions of stratosphere-to-troposphere exchange, local pollution, and pollution transport to this region essential. To evaluate free-tropospheric and surface O-3 in the western U.S., we use self-organizing maps to cluster 18 years of ozonesonde profiles from Trinidad Head, CA. Three of nine O-3 mixing ratio profile clusters exhibit thin laminae of high O-3 above Trinidad Head. The high O-3 layers are located between 1 and 6 km above mean sea level and reside above an inversion associated with a northern location of the Pacific subtropical high. Ancillary data (reanalyses, trajectories, and remotely sensed carbon monoxide) help identify the high O-3 sources in one cluster, but distinguishing mixed influences on the elevated O-3 in other clusters is difficult. Correlations between the elevated tropospheric O-3 and surface O-3 at high-altitude monitors at Lassen Volcanic and Yosemite National Parks, and Truckee, CA, are marked and long lasting. The temporal correlations likely result from a combination of transport of baseline O-3 and covarying meteorological parameters. Days corresponding to the high O-3 clusters exhibit hourly surface O-3 anomalies of +5-10 ppbv compared to a climatology; the positive anomalies can last up to 3 days after the ozonesonde profile. The profile and surface O-3 links demonstrate the importance of regular ozonesonde profiling at Trinidad Head.
  • Source:
    Journal of Geophysical Research-Atmospheres, 122(2), 1261-1280.
  • DOI:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Submitted
  • Main Document Checksum:
    urn:sha-512:3f11606c8634b0f9cedf6aa0d960183a59cf97ba53ca728f8cfdf812e66429894ac6c637b3de7d57935197c34f35cdaa293b60ef53ebbdd53ce52d3d78e3df41
  • Download URL:
  • File Type:
    Filetype[PDF - 5.42 MB ]
ON THIS PAGE

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.