U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

Organic matter quantity and quality across salinity gradients in conduit- vs. diffuse flow-dominated subterranean estuaries



Details

  • Journal Title:
    Limnology and Oceanography
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Submarine groundwater discharge (SGD) is a source of water and bioreactive solutes to coastal zones but may be modified by organic matter (OM) remineralization dynamics within subterranean estuaries (STEs). We hypothesize that bioreactive solute fluxes should depend on water residence time in STEs, but links between OM transformations and residence time in STEs are poorly characterized. To test this hypothesis, we compare dissolved OM (DOM) quantity and quality in two hydrologically distinct STE systems: a reef lagoon on the east coast of the Yucatan Peninsula, Mexico, where semidiurnal mixing in submarine springs of a carbonate karst aquifer results in short residence times, and a barrier lagoon on the east coast of Florida, where slow flow through siliciclastic sediments results in long residence times. We measured dissolved organic carbon concentrations and characterized colored DOM (CDOM) with ultraviolet spectroscopy and fluorescence combined with Parallel Factor Analysis. Both sites exhibit similar shifts in OM quality with salinity and reflect a marine source of labile OM to the STEs. Nonconservative mixing and CDOM production occurs at all sites but the long water residence times in the siliciclastic STEs cause orders of magnitude greater production than the carbonate STE. Consistent CDOM production across sites with disparate characteristics indicates that STEs are common sources of CDOM to surface water. However, observed variation in the magnitudes of CDOM production indicates that estimating global, and even regional, solute fluxes associated with SGD will be complicated by hydrologic control on extents of OM remineralization.
  • Source:
    Limnology and Oceanography, 64(3), 1386-1402.
  • DOI:
  • Document Type:
  • Rights Information:
    CC BY
  • Compliance:
    Submitted
  • Main Document Checksum:
    urn:sha-512:323af04d9f317c3b0be292ec4284cb7c8feb7890f720c961d9a1bc1417290fbccad4c893a8033fd7afd6eb5bfbf6e244540bc6fdbf3fed31595ee9f71a07adb5
  • Download URL:
  • File Type:
    Filetype[PDF - 2.01 MB ]
ON THIS PAGE

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.