The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
Accounting for Changing Temperature Patterns Increases Historical Estimates of Climate Sensitivity
-
2018
-
-
Source: Geophysical Research Letters, 45(16), 8490-8499.
Details:
-
Journal Title:Atmospheric Chemistry and Physics
-
Personal Author:
-
NOAA Program & Office:
-
Description:Eight atmospheric general circulation models (AGCMs) are forced with observed historical (1871-2010) monthly sea surface temperature and sea ice variations using the Atmospheric Model Intercomparison Project II data set. The AGCMs therefore have a similar temperature pattern and trend to that of observed historical climate change. The AGCMs simulate a spread in climate feedback similar to that seen in coupled simulations of the response to CO2 quadrupling. However, the feedbacks are robustly more stabilizing and the effective climate sensitivity (EffCS) smaller. This is due to a pattern effect, whereby the pattern of observed historical sea surface temperature change gives rise to more negative cloud and longwave clear-sky feedbacks. Assuming the patterns of long-term temperature change simulated by models, and the radiative response to them, are credible; this implies that existing constraints on EffCS from historical energy budget variations give values that are too low and overly constrained, particularly at the upper end. For example, the pattern effect increases the long-term Otto et al. (2013, ) EffCS median and 5-95% confidence interval from 1.9K (0.9-5.0K) to 3.2K (1.5-8.1K).
-
Source:Geophysical Research Letters, 45(16), 8490-8499.
-
DOI:
-
Document Type:
-
Funding:
-
Rights Information:CC BY
-
Compliance:Submitted
-
Main Document Checksum:
-
Download URL:
-
File Type: