| Downdrafts and the Evolution of Boundary Layer Thermodynamics in Hurricane Earl (2010) before and during Rapid Intensification - :19521 | Office of Oceanic and Atmospheric Research (OAR)
Stacks Logo
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.
 
 
Help
Clear All Simple Search
Advanced Search
Downdrafts and the Evolution of Boundary Layer Thermodynamics in Hurricane Earl (2010) before and during Rapid Intensification
  • Published Date:
    2018
  • Source:
    Monthly Weather Review, 146(11), 3545-3565.
Filetype[PDF-3.77 MB]


Details:
  • Description:
    Using a combination of NOAA P-3 aircraft tail Doppler radar, NOAA and NASA dropsondes, and buoy- and drifter-based sea surface temperature data, different types of downdrafts and their influence on boundary layer (BL) thermodynamics are examined in Hurricane Earl (2010) during periods prior to rapid intensification [RI; a 30-kt (15.4 m s?1) increase in intensity over 24 h] and during RI. Before RI, the BL was generally warm and moist. The largest hindrances for intensification are convectively driven downdrafts inside the radius of maximum winds (RMW) and upshear-right quadrant, and vortex-tilt-induced downdrafts outside the RMW in the upshear-left quadrant. Possible mechanisms for overcoming the low entropy (?e) air induced by these downdrafts are BL recovery through air?sea enthalpy fluxes and turbulent mixing by atmospheric eddies. During RI, convective downdrafts of varying strengths in the upshear-left quadrant had differing effects on the low-level entropy and surface heat fluxes. Interestingly, the stronger downdrafts corresponded with maximums in 10-m ?e. It is hypothesized that the large amount of evaporation in a strong (>2 m s?1) downdraft underneath a precipitation core can lead to high amounts of near-surface specific humidity. By contrast, weaker downdrafts corresponded with minimums in 10-m ?e, likely because they contained lower evaporation rates. Since weak and dry downdrafts require more surface fluxes to recover the low entropy air than strong and moist downdrafts, they are greater hindrances to storm intensification. This study emphasizes how different types of downdrafts are tied to hurricane intensity change through their modification of BL thermodynamics.

  • Document Type:
  • Main Document Checksum:
  • Supporting Files:
    No Additional Files
No Related Documents.
You May Also Like: