Internal Intraseasonal Variability of the West African Monsoon in WRF
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Internal Intraseasonal Variability of the West African Monsoon in WRF

Filetype[PDF-5.48 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Journal of Climate
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The West African monsoon (WAM) and its landmark features, which include African easterly waves (AEWs) and the African easterly jet (AEJ), exhibit significant intraseasonal variability in boreal summer. However, the degree to which this variability is modulated by external large-scale phenomena, such as the Madden-Julian oscillation (MJO), remains unclear. The Weather Research and Forecasting (WRF) Model is employed to diagnose the importance of the MJO and other external influences for the intraseasonal variability of the WAM and associated AEW energetics by removing 30-90-day signals from initial and lateral boundary conditions in sensitivity tests. The WAM produces similar intraseasonal variability in the absence of external influences, indicating that the MJO is not critical to produce WAM variability. In control and sensitivity experiments, AEW precursor signals are similar near the AEJ entrance in East Africa. For example, an eastward extension of the AEJ increases barotropic and baroclinic energy conversions in East Africa prior to a 30-90-day maximum of perturbation kinetic energy in West Africa. The WAM appears to prefer a faster oscillation when MJO forcing is removed, suggesting that the MJO may serve as a pacemaker for intraseasonal oscillations in the WAM. WRF results show that eastward propagating intraseasonal signals (e.g., Kelvin wave fronts) are responsible for this pacing, while the role of westward propagating intraseasonal signals (e.g., MJO-induced Rossby waves) appears to be limited. Mean state biases across the simulations complicate the interpretation of results.
  • Source:
    Journal of Climate, 30(15), 5815-5833.
  • DOI:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1