Probabilistic Seasonal Forecasts in the North American Multimodel Ensemble: A Baseline Skill Assessment
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields



Publication Date Range:


Document Data


Document Type:






Clear All

Query Builder

Query box

Clear All

For additional assistance using the Custom Query please check out our Help Page


Probabilistic Seasonal Forecasts in the North American Multimodel Ensemble: A Baseline Skill Assessment

Filetype[PDF-1.40 MB]


  • Journal Title:
    Journal of Climate
  • NOAA Program & Office:
  • Description:
    The North American Multimodel Ensemble (NMME) forecasting system has been continuously producing seasonal forecasts since August 2011. The NMME, with its suite of diverse models, provides a valuable opportunity for characterizing forecast confidence using probabilistic forecasts. The current experimental probabilistic forecast product (in map format) presents the most likely tercile for the seasonal mean value, chosen out of above normal, near normal, or below normal categories, using a nonparametric counting method to determine the probability of each class. The skill of the 3 -month -mean probabilistic forecasts of 2-m surface temperature (T2m), precipitation rate, and sea surface temperature is assessed using forecasts from the 29-yr (1982-2010) NMME hindcast database. Three forecast configurations are considered: a full six model NMME; a "mini-NMME" with 24 members, four each from six models; and the 24 -member CFSv2 alone. Skill is assessed on the cross -validated hindcasts using the Brier skill score (BSS); forecast reliability and resolution are also assessed. This study provides a baseline skill assessment of the current method of creating probabilistic forecasts from the NMME system. For forecasts in the above- and below -normal terciles for all variables and geographical regions examined in this study, BSS for NMME forecasts is higher than BSS for CFSv2 forecasts. Nitio-3.4 forecasts from the full NMME and the mini-NMME receive nearly identical BSS that are higher than BSS for CFSv2 forecasts. Even systems with modest BSS, such as T2m in the Northern Hemisphere, have generally high reliability, as shown in reliability diagrams.
  • Source:
    Journal of Climate, 29(8), 3015-3026.
  • Document Type:
  • Rights Information:
  • Compliance:
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at

Version 3.26