Northwest Flow Snow Aspects of Hurricane Sandy
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Northwest Flow Snow Aspects of Hurricane Sandy

Filetype[PDF-9.96 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Weather and Forecasting
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    In late October 2012, Hurricane Sandy tracked along the eastern U.S. coastline and made landfall over New Jersey after turning sharply northwest and becoming posttropical while interacting with a complex upper-level low pressure system that had brought cold air into the Appalachian region. The cold air, intensified by the extreme low pressure tracking just north of the region, combined with deep moisture and topographically enhanced ascent to produce an unusual and high-impact early season northwest flow snow (NWFS) that has no analog in recent history. This paper investigates the importance of the synoptic-scale pattern, forcing mechanisms, moisture characteristics (content, depth, and likely sources), and low-level winds, as well as the evolution of some of these features compared to more typical NWFS events in the southern Appalachian Mountains. Several other aspects of the Sandy snowfall event are investigated, including low-level stability and mountain wave formation as manifested in vertical profiles and radar observations. The importance to operational forecasters of recognizing and understanding these factors and differences from more common NWFS events is also discussed.
  • Source:
    Weather and Forecasting, 31(1), 173-195.
  • DOI:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1