Welcome to the NOAA Institutional Repository |
Stacks Logo
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.
Clear All Simple Search
Advanced Search
Model Space Localization Is Not Always Better Than Observation Space Localization for Assimilation of Satellite Radiances
  • Published Date:
  • Source:
    Monthly Weather Review, 143(10), 3948-3955.
Filetype[PDF-753.05 KB]

  • Description:
    Covariance localization is an essential component of ensemble-based data assimilation systems for large geophysical applications with limited ensemble sizes. For integral observations like the satellite radiances, where the concepts of location or vertical distance are not well defined, vertical localization in observation space is not as straightforward as in model space. The detailed differences between model space and observation space localizations are examined using a real radiance observation. Counterintuitive analysis increments can be obtained with model space localization; the magnitude of the increment can increase and the increment can change sign when the localization scale decreases. This occurs when there are negative background-error covariances and a predominately positive forward operator. Too narrow model space localization can neglect the negative background-error covariances and result in the counterintuitive analysis increments. An idealized 1D model with integral observations and known true error covariance is then used to compare errors resulting from model space and observation space localizations. Although previous studies have suggested that observation space localization is inferior to model space localization for satellite radiances, the results from the 1D model reveal that observation space localization can have advantages over model space localization when there are negative background-error covariances. Differences between model space and observation space localizations disappear as ensemble size, observation error variance, and localization scale increase. Thus, large ensemble sizes and vertical localization length scales may be needed to more effectively assimilate radiance observations.
  • Document Type:
  • Main Document Checksum:
No Related Documents.
You May Also Like: