AMOC and North Atlantic Ocean Decadal Variability: A Review
-
2025
Details
-
Journal Title:Oceans
-
Personal Author:
-
NOAA Program & Office:
-
Description:The North Atlantic Ocean is vital to Earth’s climate system. Scientific investigations have identified the Atlantic Meridional Overturning Circulation (AMOC) as a significant factor influencing global climate change. This circulation involves ocean currents that carry relatively warm, salty water northward in the upper layers, while transporting colder, less salty water southward in the deeper layers. The AMOC relies on descending water at deep convection sites in the high-latitude North Atlantic (NA), where warmer water cools, becomes denser, and sinks. A concern regarding the AMOC is that the freshening of the sea surface at these convection sites can slow it by inhibiting deep convection. Researchers have used oceanographic observations and models of Earth’s climate and ocean circulation to investigate decadal shifts in the AMOC and NA. We examined these findings to provide insights into these models, observational analyses, and palaeoceanographic reconstructions, aiming to deepen our understanding of AMOC variability and offer potential predictions for future climate change in the North Atlantic. While the influence of high-latitude freshwater is crucial and may slow the AMOC, evidence also shows a complex feedback mechanism. In this mechanism, the negative feedback from wind stress can stabilize the AMOC, partially counteracting the positive feedback effects of freshwater at high latitudes. Although some models predict significant shifts in AMOC dynamics, suggesting imminent and possibly severe deceleration, recent observational research presents a more cautious view. These data analysis studies acknowledge changes, but highlight the robustness of the AMOC, particularly in its upper arm within the Gulf Stream system. While it cannot be entirely dismissed that the AMOC may reach its tipping point within this century, an analysis of data concerning the decadal variability in the AMOC’s upper arm indicates that a collapse is unlikely within this timeframe, although significant weakening remains quite possible. Furthermore, deceleration of the AMOC’s upper arm could lead to less stable and more vulnerable North Atlantic Ocean climate patterns over extended periods.
-
Source:Oceans, 6(3), 59
-
DOI:
-
ISSN:2673-1924
-
Format:
-
Publisher:
-
Document Type:
-
License:
-
Rights Information:CC BY
-
Compliance:Submitted
-
Main Document Checksum:urn:sha-512:41720765dd490c6eb4eb20dd856f27cc721085ed38b90ef814681ef285f2a791551b10f5e5e9f659e41341d644679cb4166bd755e2a4f81986d9fe869c8ffb0c
-
Download URL:
-
File Type:
ON THIS PAGE
The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles,
guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the
NOAA IR retains documents in their original published format to ensure public access to scientific information.
You May Also Like