The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
Exploring NWS Forecasters’ Assessment of AI Guidance Trustworthiness
-
2024
-
-
Source: Weather and Forecasting, 39(8), 1219-1241
Details:
-
Journal Title:Weather and Forecasting
-
Personal Author:
-
NOAA Program & Office:
-
Description:As artificial intelligence (AI) methods are increasingly used to develop new guidance intended for operational use by forecasters, it is critical to evaluate whether forecasters deem the guidance trustworthy. Past trust-related AI research suggests that certain attributes (e.g., understanding how the AI was trained, interactivity, and performance) contribute to users perceiving the AI as trustworthy. However, little research has been done to examine the role of these and other attributes for weather forecasters. In this study, we conducted 16 online interviews with National Weather Service (NWS) forecasters to examine (i) how they make guidance use decisions and (ii) how the AI model technique used, training, input variables, performance, and developers as well as interacting with the model output influenced their assessments of trustworthiness of new guidance. The interviews pertained to either a random forest model predicting the probability of severe hail or a 2D convolutional neural network model predicting the probability of storm mode. When taken as a whole, our findings illustrate how forecasters’ assessment of AI guidance trustworthiness is a process that occurs over time rather than automatically or at first introduction. We recommend developers center end users when creating new AI guidance tools, making end users integral to their thinking and efforts. This approach is essential for the development of useful and used tools. The details of these findings can help AI developers understand how forecasters perceive AI guidance and inform AI development and refinement efforts.
-
Source:Weather and Forecasting, 39(8), 1219-1241
-
DOI:
-
ISSN:0882-8156;1520-0434;
-
Format:
-
Publisher:
-
Document Type:
-
Funding:
-
Rights Information:Other
-
Compliance:Submitted
-
Main Document Checksum:
-
Download URL:
-
File Type: