U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

Development of Multiscale EnKF within GSI and Its Applications to Multiple Convective Storm Cases with Radar Reflectivity Data Assimilation Using the FV3 Limited-Area Model



Select the Download button to view the document
Please click the download button to view the document.

Details

  • Journal Title:
    Monthly Weather Review
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    To improve the representation of all relevant scales in initial conditions for large-domain convection-allowing models, a new multiscale ensemble Kalman filter (MEnKF) algorithm is developed and implemented within the Gridpoint Statistical Interpolation analysis system (GSI) data assimilation framework coupled with the Finite-Volume Cubed-Sphere Dynamical Core (FV3) limited-area model. The algorithm utilizes ensemble background error covariances filtered to match the observations assimilated. This is realized in a sequential manner. 1) When assimilating coarse-resolution observations such as radiosondes, ensemble background perturbations are filtered to remove scales smaller than those the observations can represent, along with relatively large horizontal localization radii to ensure low-noise and balanced analysis increments. 2) The resulting ensemble analyses from the first step then serve as the background to assimilate denser observations such as radar data with smaller localization radii. Several passes can be taken to assimilate all observations. In this paper, vertically increasing horizontal filter scales are used when assimilating rawinsonde and surface observations together, while radar data are assimilated in the second step. The algorithm is evaluated through six convective storm cases during May 2021, with cycled assimilation of either conventional data only or with additional radar reflectivity followed by 24-h ensemble forecasts. Overall, positive impacts of the MEnKF on forecasts are obtained regardless of reflectivity data; its advantage over the single-scale EnKF is most significant in surface humidity and temperature forecasts up to at least 12 h. More accurate hourly precipitation forecasts with MEnKF can last up to 24 h for light rain. Furthermore, MEnKF forecasts higher ensemble probabilities for the observed hazardous events.
  • Source:
    Monthly Weather Review, 152(8), 1839-1857
  • DOI:
  • ISSN:
    0027-0644 ; 1520-0493
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Submitted
  • Main Document Checksum:
    urn:sha-512:21c09c075dea80ad4330130edbc8704fd8317c4253d122ba7560844c5fb758d942687eafd1ea678dc5bc55451dcbfc701e2ce1216826940bc4cb486161dd39f6
  • Download URL:
  • File Type:
    Filetype[PDF - 9.49 MB ]
ON THIS PAGE

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.