U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

The Limits of Ocean Forcing on the Exchange Flow of the Salish Sea



Details

  • Journal Title:
    Journal of Geophysical Research: Oceans
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The dynamics of ocean‐estuary exchange depend on a variety of local and remote ocean forcing mechanisms where local mechanisms include those directly forcing the estuary such as tides, river discharge, and local wind stress; remote forcing includes forcing from the ocean such as coastal wind stress and coastal stratification variability. We use a numerical model to investigate the limits of oceanic influence, such as wind‐driven upwelling, on the Salish Sea exchange flow and salt transport. We find that along‐shelf winds substantially modulate flow throughout the Strait of Juan de Fuca until flow reaches sill‐influenced constrictions. At these constrictions the exchange flow variability becomes sensitive to local tidal and river forcing. The salt exchange variability is tidally dominated at Admiralty Inlet and upwelling has little impact on seasonal salt exchange variability. While within Haro Strait, the salt exchange variability is driven by a mix of coastal upwelling and local forcing including river discharge. There, the transition from oceanic to local control of salt exchange occurs over a longer distance and is primarily identifiable in the increasing variability of bulk outflowing salinity values. The differences between the two locations highlight how ocean variability interacts with both tidal pumping and gravitational circulation. We also distinguish between transient ocean forcing which can modify fjord properties near the mouth of the strait and seasonal ocean forcing which primarily affects along‐strait pressure gradients. The results have implications for understanding the transport variability of biogeochemical variables that are influenced by both along‐shelf winds and local sources.
  • Source:
    Journal of Geophysical Research: Oceans, 130(5)
  • DOI:
  • ISSN:
    2169-9275 ; 2169-9291
  • Format:
  • Publisher:
  • Document Type:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Submitted
  • Main Document Checksum:
    urn:sha-512:b20ddbc82fdabda4bc14d73b908b3849e49f33370056a1b22413e34a52a155ae642e4c37107fdbeb8919ba21056f990e877ac87b5d14ba914b5a94df26c07313
  • Download URL:
  • File Type:
    Filetype[PDF - 3.02 MB ]
ON THIS PAGE

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.