U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

Synergistic Potential of Optical and Radar Remote Sensing for Snow Cover Monitoring



Select the Download button to view the document
Please click the download button to view the document.

Details

  • Journal Title:
    Remote Sensing
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    This research studies the characteristics of snow-covered area (SCA) from two vastly different sensors: optical (Moderate-Resolution Imaging Spectroradiometer, or MODIS, equipped on board the Terra satellite) and radar (Synthetic Aperture Radar (SAR) on-board Sentinel-1 satellites). The focus are the five mountain ranges of the Iberian Peninsula (Cantabrian System, Central System, Iberian Range, Pyrenees, and Sierra Nevada). The MODIS product was selected to identify SCA dynamics in these ranges using the Probability of Snow Cover Presence Index (PSCPI). In addition, we evaluate the potential advantage of the use of SAR remote sensing to complete optical SCA under cloudy conditions. For this purpose, we utilize the Copernicus High-Resolution Snow and Ice SAR Wet Snow (HRS&I SWS) product. The Pyrenees and the Sierra Nevada showed longer-lasting SCA duration and a higher PSCPI throughout the average year. Moreover, we demonstrate that the latitude gradient has a significant influence on the snowline elevation in the Iberian mountains (R2 ≥ 0.84). In the Iberian mountains, a general negative SCA trend is observed due to the recent climate change impacts, with a particularly pronounced decline in the winter months (December and January). Finally, in the Pyrenees, we found that wet snow detection has high potential for the spatial gap-filling of MODIS SCA in spring, contributing above 27% to the total SCA. Notably, the additional SCA provided in winter is also significant. Based on the results obtained in the Pyrenees, we can conclude that implementing techniques that combine SAR and optical satellite sensors for SCA detection may provide valuable additional SCA data for the other Iberian mountains, in which the radar product is not available.
  • Source:
    Remote Sensing, 16(19), 3705
  • DOI:
  • ISSN:
    2072-4292
  • Format:
  • Publisher:
  • Document Type:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
    urn:sha-512:caf76f86246387bc551754a8b3fb6e7bba1d316049ddcf4f28ebb406756f849ea0e859b54dc0262671d63e71aba9e409f8d77d1427377a2d15ea5f347a9c43e7
  • Download URL:
  • File Type:
    Filetype[PDF - 8.66 MB ]
ON THIS PAGE

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.