U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

Using Bayesian stable isotope mixing models and generalized additive models to resolve diet changes for fish-eating killer whales Orcinus orca



Details

  • Journal Title:
    Marine Ecology Progress Series
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Understanding diet composition is fundamental to making conservation and management decisions about depleted species, particularly when nutritional stress is a potential threat hindering recovery. Diet in free-ranging marine mammals is challenging to study, but stable isotope mixing models are a powerful means of estimating the contribution of prey species to diet and can improve precision by leveraging information from multiple data sources. We evaluated diet composition of a fish-eating killer whale population (Southern Resident killer whales, Orcinus orca) using 2 approaches. First, we fit generalized additive models to evaluate seasonal and interannual patterns in isotopic values across age, sex, and pod, which revealed seasonal carbon enrichment for certain pods and a recent increased nitrogen enrichment that could suggest increased Chinook salmon consumption, changing isotopic values of prey, or nutritional stress. Second, we developed a Bayesian stable isotope mixing model that accounts for the different integration times represented by bulk stable isotopes and fecal samples. Results showed that estimated prey contributions are similar between prey data sources, though the precision of estimates from periods with smaller sample sizes was improved by using an informative prior to account for the different consumption windows of the data. This study illustrates the importance of improving our understanding of how killer whale diets vary over time (both seasonally and across years) and uses a novel approach to resolve 2 sources of diet information (stable isotope, fecal samples) with different consumption windows.
  • Source:
    Marine Ecology Progress Series, 649, 189-200
  • DOI:
  • ISSN:
    0171-8630 ; 1616-1599
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
    urn:sha-512:56ea064a3572e8188d7ccb1bea39032786aa02f0fa655b945ebc1b59b9836523714f2e894aa747eef65356bb5c34a67fcf5aca597a752c75bb929ed493fac80e
  • Download URL:
  • File Type:
    Filetype[PDF - 546.34 KB ]
ON THIS PAGE

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.