The Extreme Wind Events in the Ross Island Region of Antarctica
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

The Extreme Wind Events in the Ross Island Region of Antarctica

Filetype[PDF-3.91 MB]



Details:

  • Journal Title:
    Weather and Forecasting
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Numerous incidents of structural damage at the U.S. Antarctic Program’s (USAP) McMurdo Station due to extreme wind events (EWEs) have been reported over the past decade. Utilizing nearly 20 yr (~1992–2013) of University of Wisconsin automatic weather station (AWS) data from three different stations in the Ross Island region (Pegasus North, Pegasus South, and Willie Field), statistical analysis shows no significant trends in EWE frequency, intensity, or duration. EWEs more frequently occur during the transition seasons. To assess the dynamical environment of these EWEs, Antarctic Mesoscale Prediction System (AMPS) forecast back trajectories are computed and analyzed in conjunction with several other AMPS fields for the strongest events at McMurdo Station. The synoptic analysis reveals that McMurdo Station EWEs are nearly always associated with strong southerly flow due to an approaching Ross Sea cyclone and an upper-level trough around Cape Adare. A Ross Ice Shelf air stream (RAS) environment is created with enhanced barrier winds along the Transantarctic Mountains, downslope winds in the lee of the glaciers and local topography, and a tip jet effect around Ross Island. The position and intensity of these Ross Sea cyclones are most influenced by the occurrence of a central Pacific ENSO event, which causes the upper-level trough to move westward. An approaching surface cyclone would then be in position to trigger an event, depending on how the wind direction and speed impinges on the complex topography around McMurdo Station.
  • Source:
    Weather and Forecasting, 31(3), 985-1000
  • DOI:
  • ISSN:
    0882-8156;1520-0434;
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1