An Adaptive Channel Selection Method for Assimilating the Hyperspectral Infrared Radiances
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

An Adaptive Channel Selection Method for Assimilating the Hyperspectral Infrared Radiances

Filetype[PDF-1.39 MB]



Details:

  • Journal Title:
    Monthly Weather Review
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Hyperspectral infrared (IR) satellites can provide high-resolution vertical profiles of the atmospheric state, which significantly contributes to the forecast skill of numerical weather prediction, especially for regions with sparse observations. One challenge in assimilating the hyperspectral radiances is how to effectively extract the observation information, due to the interchannel correlations and correlated observation errors. An adaptive channel selection method is proposed, which is implemented within the data assimilation scheme and selects the radiance observation with the maximum reduction of variance in observation space. Compared to the commonly used channel selection method based on the maximum entropy reduction (ER), the adaptive method can provide flow-dependent and time-varying channel selections. The performance of the adaptive selection method is evaluated by assimilating only the synthetic Fengyun-4A (FY-4A) GIIRS IR radiances in an observing system simulation experiment (OSSE), with model resolutions from 7.5 to 1.5 km and then 300 m. For both clear-sky and all-sky conditions, the adaptive method generally produces smaller RMS errors of state variables than the ER-based method given similar amounts of assimilated radiances, especially with fine model resolutions. Moreover, the adaptive method has minimum RMS errors smaller than or approaching those with all channels assimilated. For the intensity of the tropical cyclone, the adaptive method also produces smaller errors of the minimum dry air mass and maximal wind speed at different levels, compared to the ER-based selection method. Significance Statement Assimilating satellite radiances has been essential for numerical weather prediction. Hyperspectral infrared satellites provide high-resolution vertical profiles for the atmospheric state and can further improve the numerical weather prediction. Due to limited computational resources, and correlated observations and associated errors, efficient and effective ways to assimilate the hyperspectral radiances are needed. An adaptive channel selection method that is incorporated with data assimilation is proposed. The adaptive channel selection can effectively extract the information from hyperspectral radiances under both clear- and all-sky conditions, with increased model resolutions from kilometers to subkilometers.
  • Source:
    Monthly Weather Review, 152(3), 793-810
  • DOI:
  • ISSN:
    0027-0644;1520-0493;
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at

Version 3.27.1