A Case Study of Observed and Modeled Barrier Flow in the Denmark Strait in May 2015
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

A Case Study of Observed and Modeled Barrier Flow in the Denmark Strait in May 2015

Filetype[PDF-5.09 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Monthly Weather Review
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Mesoscale barrier jets in the Denmark Strait are common in winter months and have the capability to influence open ocean convection. This paper presents the first detailed observational study of a summertime (21 May 2015) barrier wind event in the Denmark Strait using dropsondes and observations from an airborne Doppler wind lidar (DWL). The DWL profiles agree well with dropsonde observations and show a vertically narrow (~250–400 m) barrier jet of 23–28 m s−1 near the Greenland coast that broadens (~300–1000 m) and strengthens farther off coast. In addition, otherwise identical regional high-resolution Weather Research and Forecasting (WRF) Model simulations of the event are analyzed at four horizontal grid spacings (5, 10, 25, and 50 km), two vertical resolutions (40 and 60 levels), and two planetary boundary layer (PBL) parameterizations [Mellor–Yamada–Nakanishi–Niino, version 2.5 (MYNN2.5) and University of Washington (UW)] to determine what model configurations best simulate the observed jet structure. Comparison of the WRF simulations with wind observations from satellites, dropsondes, and the airborne DWL scans indicate that the combination of both high horizontal resolution (5 km) and vertical resolution (60 levels) best captures observed barrier jet structure and speeds as well as the observed cloud field, including some convective clouds. Both WRF PBL schemes produced reasonable barrier jets with the UW scheme slightly outperforming the MYNN2.5 scheme. However, further investigation at high horizontal and vertical resolution is needed to determine the impact of the WRF PBL scheme on surface energy budget terms, particularly in the high-latitude maritime environment around Greenland.
  • Source:
    Monthly Weather Review, 145(6), 2385-2404
  • DOI:
  • ISSN:
    0027-0644;1520-0493;
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1