Life Cycle Characteristics of MCSs in Middle East China Tracked by Geostationary Satellite and Precipitation Estimates
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Life Cycle Characteristics of MCSs in Middle East China Tracked by Geostationary Satellite and Precipitation Estimates

Filetype[PDF-1.98 MB]



Details:

  • Journal Title:
    Monthly Weather Review
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    By combining high temporal and spatial resolution Multifunctional Transport Satellite-1R (MTSAT-1R) infrared (IR) images and precipitation data from the Climate Prediction Center morphing technique (CMORPH), this study tracked mesoscale convective systems (MCSs) from May to August in 2008 and 2009 in the middle of east China with an automatic tracking algorithm based on an areal overlapping methodology. This methodology is adjusted to include those MCSs with a relative weak intensity before formation. The unique advantage of combining high temporal and spatial resolution geostationary satellite brightness temperature images and the precipitation measurements for tracking MCSs is that the cloud-top height along with the coverage and the precipitation intensity can be well identified. Results showed that the MCSs formed most frequently in the southwest Henan Province and at the border of four provinces—Shandong, Henan, Anhui, and Jiangsu—which is east of the convergence zone near the terrain’s edge. Locations of the highest cloud tops and of the heaviest precipitation rates did not always match. In addition, the MCSs in the study region tended to first reach the maximum precipitation rate, followed soon by the minimum brightness temperature, then the maximum associated precipitation area, and finally the maximum in system area.
  • Source:
    Monthly Weather Review, 144(7), 2517-2530
  • DOI:
  • ISSN:
    0027-0644;1520-0493;
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1