On the Performance of Airborne Meteorological Observations Against Other In-situ Measurements
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

On the Performance of Airborne Meteorological Observations Against Other In-situ Measurements

Filetype[PDF-1.86 MB]



Details:

  • Journal Title:
    Journal of Atmospheric and Oceanic Technology
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Routine in situ observations of the atmosphere taken in flight by commercial aircraft provide atmospheric profiles with greater temporal density and, in many parts of the country, at more locations than the operational radiosonde network. Thousands of daily temperature and wind observations are provided by largely complementary systems, the Airborne Meteorological Data Relay (AMDAR) and the Tropospheric Airborne Meteorological Data Reporting (TAMDAR). All TAMDAR aircraft also measure relative humidity while a subset of AMDAR aircraft are equipped with the Water Vapor Sensing System (WVSS) measure specific humidity.One year of AMDAR/WVSS and TAMDAR observations are evaluated against operational National Weather Service (NWS) radiosondes to characterize the performance of these systems in similar environments. For all observed variables, AMDAR reports showed both smaller average differences and less random differences with respect to radiosondes than the corresponding TAMDAR observations. Observed differences were not necessarily consistent with known radiosonde biases. Since the systems measure different humidity variables, moisture is evaluated in both specific and relative humidity using both aircraft and radiosonde temperatures to derive corresponding moisture variables. Derived moisture performance is improved when aircraft-based temperatures are corrected prior to conversion. AMDAR observations also show greater consistency between different aircraft than TAMDAR observations do. The small variability in coincident WVSS humidity observations indicates that they may prove more reliable than humidity observations from NWS radiosondes.
  • Source:
    Journal of Atmospheric and Oceanic Technology (2021)
  • DOI:
  • ISSN:
    0739-0572;1520-0426;
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at

Version 3.27.1