Reply to “What Is the Maximum Entropy Principle? Comments on ‘Statistical Theory on the Functional Form of Cloud Particle Size Distributions’”
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Reply to “What Is the Maximum Entropy Principle? Comments on ‘Statistical Theory on the Functional Form of Cloud Particle Size Distributions’”

Filetype[PDF-85.58 KB]



Details:

  • Journal Title:
    Journal of the Atmospheric Sciences
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    We welcome the opportunity to correct the misunderstandings and misinterpretations contained in Yano’s comment that led him to incorrectly state that Wu and McFarquhar misunderstood the maximum entropy (MaxEnt) principle. As correctly stated by Yano, the principle itself does not suffer from the problem of a lack of invariance. But, as restated in this reply and in Wu and McFarquhar, the commonly used Shannon–Gibbs entropy does suffer from a lack of invariance for coordinate transform when applied in continuous cases, and this problem is resolved by the use of the relative entropy. Further, it is restated that the Wu and McFarquhar derivation of the PSD form using MaxEnt is more general than the formulation by Yano and allows more constraints with any functional relations to be applied. The derivation of Yano is nothing new but the representation of PSDs in other variables.
  • Source:
    Journal of the Atmospheric Sciences, 76(12), 3961-3963
  • DOI:
  • ISSN:
    0022-4928;1520-0469;
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1