Turbulent Winds and Temperature Fronts in Large-Eddy Simulations of the Stable Atmospheric Boundary Layer
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Turbulent Winds and Temperature Fronts in Large-Eddy Simulations of the Stable Atmospheric Boundary Layer

Filetype[PDF-4.09 MB]



Details:

  • Journal Title:
    Journal of the Atmospheric Sciences
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The nighttime high-latitude stably stratified atmospheric boundary layer (SBL) is computationally simulated using high–Reynolds number large-eddy simulation on meshes varying from 2003 to 10243 over 9 physical hours for surface cooling rates Cr = [0.25, 1] K h−1. Continuous weakly stratified turbulence is maintained for this range of cooling, and the SBL splits into two regions depending on the location of the low-level jet (LLJ) and . Above the LLJ, turbulence is very weak and the gradient Richardson number is nearly constant: . Below the LLJ, small scales are dynamically important as the shear and buoyancy frequencies vary with mesh resolution. The heights of the SBL and Ri noticeably decrease as the mesh is varied from 2003 to 10243. Vertical profiles of the Ozmidov scale show its rapid decrease with increasing , with over a large fraction of the SBL for high cooling. Flow visualization identifies ubiquitous warm–cool temperature fronts populating the SBL. The fronts span a large vertical extent, tilt forward more so as the surface cooling increases, and propagate coherently. In a height–time reference frame, an instantaneous vertical profile of temperature appears intermittent, exhibiting a staircase pattern with increasing distance from the surface. Observations from CASES-99 also display these features. Conditional sampling based on linear stochastic estimation is used to identify coherent structures. Vortical structures are found upstream and downstream of a temperature front, similar to those in neutrally stratified boundary layers, and their dynamics are central to the front formation.
  • Source:
    Journal of the Atmospheric Sciences, 73(4), 1815-1840
  • DOI:
  • ISSN:
    0022-4928;1520-0469;
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1