Using Synthetic Brightness Temperatures to Address Uncertainties in Cloud-Top-Height Verification
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Using Synthetic Brightness Temperatures to Address Uncertainties in Cloud-Top-Height Verification

Filetype[PDF-4.30 MB]



Details:

  • Journal Title:
    Journal of Applied Meteorology and Climatology
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Cloud-top verification is inherently difficult because of large uncertainties in the estimates of observed cloud-top height. Misplacement of cloud top associated with transmittance through optically thin cirrus is one of the most common problems. Forward radiative models permit a direct comparison of predicted and observed radiance, but uncertainties in the vertical position of clouds remain. In this work, synthetic brightness temperatures are compared with forecast cloud-top heights so as to investigate potential errors and develop filters to remove optically thin ice clouds. Results from a statistical analysis reveal that up to 50% of the clouds with brightness temperatures as high as 280 K are actually optically thin cirrus. The filters successfully removed most of the thin ice clouds, allowing for the diagnosis of very specific errors. The results indicate a strong negative bias in midtropospheric cloud cover in the model, as well as a lack of land-based convective cumuliform clouds. The model also predicted an area of persistent stratus over the North Atlantic Ocean that was not apparent in the observations. In contrast, high cloud tops associated with deep convection were well simulated, as were mesoscale areas of enhanced trade cumulus coverage in the Sargasso Sea.
  • Source:
    Journal of Applied Meteorology and Climatology, 56(2), 283-296
  • DOI:
  • ISSN:
    1558-8424;1558-8432;
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1