Quasi-Linear Convective Systems and Derechos across Europe: Climatology, Accompanying Hazards, and Societal Impacts
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Quasi-Linear Convective Systems and Derechos across Europe: Climatology, Accompanying Hazards, and Societal Impacts

Filetype[PDF-6.03 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Bulletin of the American Meteorological Society
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    In this work, we use 8 years (2014–21) of Operational Programme for the Exchange of Weather Radar Information (OPERA) radar data, ESWD severe weather reports, and arrival time difference (ATD) lightning detection network (ATDnet) data to create a climatology of quasi-linear convective systems (QLCSs) across Europe. In the first step, 15-min radar scans were used to identify 1475 QLCS polygons. Severe weather reports, lightning data, and morphological properties were used to classify QLCSs according to their intensity into 1151 marginal (78.0%), 272 moderate (18.5%), and 52 derecho (3.5%) events. The manual evaluation led to the recognition of QLCS morphological and precipitation archetypes, areal extent, duration, speed, forward motion, width, length, accompanying hazards, injuries, and fatalities. Results indicate that QLCSs are the most frequent during summer in central Europe, while in southern Europe, their occurrence is extended to late autumn. A bow echo feature occurred in around 29% of QLCS cases, while a mesoscale convective vortex occurred in almost 9%. Among precipitation modes, trailing and embedded stratiform types accounted for around 50% of QLCSs. The most frequent hazard accompanying QLCSs was lightning (taking up on average 94.4% of the area impacted by QLCS), followed by severe wind gusts (7.9%), excessive precipitation (6.1%), large hail (2.9%), and tornadoes (0.5%). Derechos had the largest coverage of severe wind reports (49.8%), while back-building QLCSs were the most prone to excessive precipitation events (13.5%). QLCSs caused 104 fatalities and 886 injuries. Severe wind gusts were responsible for 87.6% of fatalities and 73.6% of injuries. Nearly half of all fatalities and injuries were associated with only the 10 most impactful QLCS events, mostly warm-season derechos.
  • Source:
    Bulletin of the American Meteorological Society, 105(8), E1619-E1643
  • DOI:
  • ISSN:
    0003-0007;1520-0477;
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1