Resolving Hydrometeorological Data Discontinuities along an International Border
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Resolving Hydrometeorological Data Discontinuities along an International Border

Filetype[PDF-9.52 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Bulletin of the American Meteorological Society
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Monitoring, understanding, and forecasting the hydrologic cycle of large freshwater basins often requires a broad suite of data and models. Many of these datasets and models, however, are susceptible to variations in monitoring infrastructure and data dissemination protocols when watershed, political, and jurisdictional boundaries do not align. Reconciling hydrometeorological monitoring gaps and inconsistencies across the international Laurentian Great Lakes–St. Lawrence River basin is particularly challenging because of its size and because the basin’s dominant hydrologic feature is the vast surface waters of the Great Lakes.For tens of millions of Canadian and U.S. residents that live within the Great Lakes basin, seamless binational datasets are needed to better understand and predict coastal water-level fluctuations and other conditions that could potentially threaten human and environmental health. Binational products addressing this need have historically been developed and maintained by the Coordinating Committee on Great Lakes Basic Hydraulic and Hydrologic Data (Coordinating Committee). The Coordinating Committee recently held its one-hundredth semiannual meeting and reflected on a range of historical accomplishments while setting goals for future work. This article provides a synthesis of those achievements and goals. Particularly significant legacy and recently developed datasets of the Coordinating Committee include historical Great Lakes surface water elevations, basin-scale tributary inflow to the Great Lakes, and basin-scale estimates of both over-lake and over-land precipitation. Moving forward, members of the Coordinating Committee will work toward customizing state-of-the-art hydrologic and meteorological forecasting systems across the entire Great Lakes basin and toward promoting their products and protocols as templates for successful binational coordination across other large binational freshwater basins.
  • Source:
    Bulletin of the American Meteorological Society, 99(5), 899-910
  • DOI:
  • ISSN:
    0003-0007;1520-0477;
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1