Antarctic sea ice multidecadal variability triggered by Southern Annular Mode and deep convection
-
2024
-
Details
-
Journal Title:Communications Earth & Environment
-
Personal Author:
-
NOAA Program & Office:
-
Description:Antarctic sea ice exerts great influence on Earth’s climate by controlling the exchange of heat, momentum, freshwater, and gases between the atmosphere and ocean. Antarctic sea ice extent has undergone a multidecadal slight increase followed by a substantial decline since 2016. Here we utilize a 300-yr sea ice data assimilation reconstruction and two NOAA/GFDL and five CMIP6 model simulations to demonstrate a multidecadal variability of Antarctic sea ice extent. Stronger westerlies associated with the Southern Annular Mode (SAM) enhance the upwelling of warm and saline water from the subsurface ocean. The consequent salinity increase weakens the upper-ocean stratification, induces deep convection, and in turn brings more subsurface warm and saline water to the surface. This salinity-convection feedback triggered by the SAM provides favorable conditions for multidecadal sea ice decrease. Processes acting in reverse are found to cause sea ice increase, although it evolves slower than sea ice decrease.
-
Source:Communications Earth & Environment, 5(1)
-
DOI:
-
ISSN:2662-4435
-
Format:
-
Publisher:
-
Document Type:
-
License:
-
Rights Information:CC BY-NC-ND
-
Compliance:Library
-
Main Document Checksum:urn:sha-512:16a4bbb967e95f4b185d70eb9091166803cee6edb9ef919ebf262f705a5042d7de490babc24db55e3ff4457382b5c237aaa62fc650d919da697cf764d012c535
-
Download URL:
-
File Type:
ON THIS PAGE
The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles,
guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the
NOAA IR retains documents in their original published format to ensure public access to scientific information.
You May Also Like