The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
Where Dust Comes From: Global Assessment of Dust Source Attributions With AeroCom Models
-
2024
-
-
Source: Journal of Geophysical Research: Atmospheres, 129(16)
Details:
-
Journal Title:Journal of Geophysical Research: Atmospheres
-
Personal Author:
-
NOAA Program & Office:
-
Description:The source of dust in the global atmosphere is an important factor to better understand the role of dust aerosols in the climate system. However, it is a difficult task to attribute the airborne dust over the remote land and ocean regions to their origins since dust from various sources are mixed during long‐range transport. Recently, a multi‐model experiment, namely the AeroCom‐III Dust Source Attribution (DUSA), has been conducted to estimate the relative contribution of dust in various locations from different sources with tagged simulations from seven participating global models. The BASE run and a series of runs with nine tagged regions were made to estimate the contribution of dust emitted in East‐ and West‐Africa, Middle East, Central‐ and East‐Asia, North America, the Southern Hemisphere, and the prominent dust hot spots of the Bodélé and Taklimakan Deserts. The models generally agree in large scale mean dust distributions, however models show large diversity in dust source attribution. The inter‐model differences are significant with the global model dust diversity in 30%–50%, but the differences in regional and seasonal scales are even larger. The multi‐model analysis estimates that North Africa contributes 60% of global atmospheric dust loading, followed by Middle East and Central Asia sources (24%). Southern hemispheric sources account for 10% of global dust loading, however it contributes more than 70% of dust over the Southern Hemisphere. The study provides quantitative estimates of the impact of dust emitted from different source regions on the globe and various receptor regions including remote land, ocean, and the polar regions synthesized from the seven models.
-
Source:Journal of Geophysical Research: Atmospheres, 129(16)
-
DOI:
-
ISSN:2169-897X;2169-8996;
-
Format:
-
Publisher:
-
Document Type:
-
License:
-
Rights Information:CC BY
-
Compliance:Library
-
Main Document Checksum:
-
Download URL:
-
File Type: