The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
Modeling the Impacts of Volatile Chemical Product Emissions on Atmospheric Photochemistry and Ozone Formation in Los Angeles
-
2024
-
-
Source: Journal of Geophysical Research: Atmospheres, 129(11)
Details:
-
Journal Title:Journal of Geophysical Research: Atmospheres
-
Personal Author:
-
NOAA Program & Office:
-
Description:The dominant fraction of anthropogenic volatile organic compound (VOC) emissions shifted from transportation fuels to volatile chemical products (VCP) in Los Angeles (LA) in 2010. This shift in VOC composition raises the question about the importance of VCP emissions for ozone (O3) formation. In this study, O3 chemistry during the CalNex 2010 was modeled using the Master Chemical Mechanism (MCM) version 3.3.1 and a detailed representation of VCP emissions based on measurements combined with inventory estimates. The model calculations indicate that VCP emissions contributed to 23% of the mean daily maximum 8‐hr average O3 (DMA8 O3) during the O3 episodes. The simulated OH reactivity, including the contribution from VCP emissions, aligns with observations. Additionally, this framework was employed using four lumped mechanisms with simplified representations of emissions and chemistry. RACM2‐VCP showed the closest agreement with MCM, with a slight 4% increase in average DMA8 O3 (65 ± 13 ppb), whereas RACM2 (58 ± 13 ppb) and SAPRC07B (59 ± 14 ppb) exhibited slightly lower levels. CB6r2, however, recorded reduced concentrations (37 ± 10 ppb). Although emissions of O3 precursors have declined in LA since 2010, O3 levels have not decreased significantly. Model results ascribed this trend to the rapid reduction in NOX emissions. Moreover, given the impact of COVID‐19, an analysis of 2020 reveals a shift to a NOX‐limited O3 formation regime in LA, thereby diminishing the influence of VCPs. This study provides new insights into the impact of VCP emissions on O3 pollution from an in‐depth photochemical perspective.
-
Source:Journal of Geophysical Research: Atmospheres, 129(11)
-
DOI:
-
ISSN:2169-897X;2169-8996;
-
Format:
-
Publisher:
-
Document Type:
-
Rights Information:Other
-
Compliance:Library
-
Main Document Checksum:
-
Download URL:
-
File Type: