Nd Isotopic Equilibration During Channelized Melt Transport Through the Lithosphere: A Feasibility Study Using Idealized Numerical Models
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Nd Isotopic Equilibration During Channelized Melt Transport Through the Lithosphere: A Feasibility Study Using Idealized Numerical Models

Filetype[PDF-2.25 MB]



Details:

  • Journal Title:
    Geochemistry, Geophysics, Geosystems
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    This study is motivated by the observed variability in trace element isotopic and chemical compositions of primitive (Si52 wt %) basalts in southwest North America (SWNA) during the Cenozoic transition from subduction to extension. Specifically, we focus on processes that may explain the enigmatic observation that in some localities, basalts with low Ta/Th, consistent with parental melts in a subduction setting, have signatures consistent with continental lithospheric mantle (CLM). In locations with the oldest CLM (Proterozoic and Archean), Cenozoic basalts with low Ta/Th have well below zero. We model channelized magma transport through the CLM using simple 1D transport models to explore the extent to which diffusive and reactive mass exchange can modify Nd isotopic compositions via open system melt‐wallrock interactions. For geologically reasonable channel spacings and volume fractions, we quantify the reactive assimilation rates required for incoming melt with a different than the wall‐rock to undergo a substantial isotopic shift during 10 km channelized melt transport. In the presence of grain boundaries, enhanced diffusion between melt‐rich channels and melt‐poor surrounding rock contributes to isotopic equilibration, however this effect is not enough to explain observations; our models suggest a significant contribution from reactive assimilation of wall‐rock. Additionally our models support the idea that the observed covariability in Ta/Th and in Cenozoic basalts cannot be attributed to transport alone and must also reflect the transition from subduction‐related to extension‐related parental melts in SWNA.
  • Source:
    Geochemistry, Geophysics, Geosystems, 25(10)
  • DOI:
  • ISSN:
    1525-2027;1525-2027;
  • Format:
  • Publisher:
  • Document Type:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1