U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

Snow Depth Extraction From Time‐Lapse Imagery Using a Keypoint Deep Learning Model



Details

  • Journal Title:
    Water Resources Research
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Snow pole time‐lapse photography, in which a snow pole of a known height is installed in front of a camera and photographed repeatedly over the course of a snow season, allows a large network of sites to be established relatively quickly and affordably. However, current approaches for extracting snow depth from snow poles typically relies on time intensive manual photo processing. By integrating computer vision algorithms with snow pole photography, we present a method that uses a keypoint detection model to automatically observe snow height across a network of sites. At 20 snow pole locations from Grand Mesa, CO (n = 9,722 images), our model successfully predicts the top and bottom of the pole with a mean absolute error (MAE) of 1.30 cm. To assess model generalizability, we tested the model on 12 sites in Washington State (n = 1,770 images). When the Colorado trained model was fine‐tuned using a subset of Washington images, the model predicted snow depth with a MAE of 4.0 cm. Best performance was achieved when both data sets were included during training, with a MAE of 2.05 cm for Colorado images and a MAE of 1.14 cm for Washington images. We demonstrate that, especially when trained using a subset of site‐specific data, a keypoint detection model can accelerate snow pole automation. This algorithm brings the hydrology community one step closer to a generalized snow pole detection model, and we call for a future model that integrates across time‐lapse images from additional locations.
  • Source:
    Water Resources Research, 60(7)
  • DOI:
  • ISSN:
    0043-1397 ; 1944-7973
  • Format:
  • Publisher:
  • Document Type:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
    urn:sha-512:8d1abc673bc3d7590f22159d24158e49d7070c7cb072d951fa4c285838656df94cea232b6c8c2479b443991a0c704398a8d7c69575b37486c9a714da1e26a52d
  • Download URL:
  • File Type:
    Filetype[PDF - 4.84 MB ]
ON THIS PAGE

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.