Optimal Baseflow Separation Through Chemical Mass Balance: Comparing the Usages of Two Tracers, Two Concentration Estimation Methods, and Four Baseflow Filters
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Optimal Baseflow Separation Through Chemical Mass Balance: Comparing the Usages of Two Tracers, Two Concentration Estimation Methods, and Four Baseflow Filters

Filetype[PDF-5.45 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Water Resources Research
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Optimizing empirical baseflow filters using environmental tracers (e.g., specific electrical conductance (SEC), turbidity) is an effective and efficient way to quantify the contribution of baseflow to total flow. To execute this baseflow separation, three key components are needed: The tracer, the method to estimate tracer concentration in different flow components, and the empirical baseflow filter. However, a comprehensive evaluation of the various combinations of these components, especially with a large sample of catchments, is currently lacking in the literature. Therefore, our study assembles 16 hybrid baseflow filters from two tracers, two concentration estimation methods, and four empirical baseflow filters, and evaluated their performance in baseflow separation and producing two long‐term baseflow signatures for 1,100 catchments in the Contiguous United States. Our results suggest that SEC is a superior tracer to turbidity for baseflow separation. Additionally, using monthly maximum and minimum values to represent tracer concentration in flow components produces better separation than using a power function relationship between flow rate and concentration. The four empirical baseflow filters offer a similar level of performance, regardless of the other options used. Yet, some of these filters produce inconsistent results in calculating the baseflow signatures for the catchments. Our analysis shed light on the optimization of hybrid baseflow filters for the accurate quantification of baseflow contribution.
  • Source:
    Water Resources Research, 60(7)
  • DOI:
  • ISSN:
    0043-1397;1944-7973;
  • Format:
  • Publisher:
  • Document Type:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1