Wind Distribution in the Eye of Tropical Cyclone Revealed by a Novel Atmospheric Motion Vector Derivation
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Wind Distribution in the Eye of Tropical Cyclone Revealed by a Novel Atmospheric Motion Vector Derivation

Filetype[PDF-30.48 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Journal of Geophysical Research: Atmospheres
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Observations of wind distribution in the eye of tropical cyclones (TCs) are still limited. In this study, a method to derive atmospheric motion vectors (AMVs) for TCs is developed, where selection from multiple local rotation speeds is made by considering continuity among neighboring grid points. The method is applied to 2.5‐min interval image sequences of three TCs, Lan (2017), Haishen (2020), and Nanmadol (2022), observed by the Himawari‐8 satellite. The results are compared with AMVs derived from research‐based 30‐s Himawari‐8 special observations conducted for Haishen and Nanmadol, as well as with in‐situ dropsonde observations conducted for Lan and Nanmadol. In these storms, the AMVs obtained from the 2.5‐min interval images in the eye are found to be in good agreement with the dropsonde observations. Examinations of AMVs in the eye reveal transient azimuthal wavenumber‐1 features in all three TCs. These features are consistent with algebraically growing wavenumber‐1 disturbances, which transport angular momentum inward and accelerate the eye rotation. In the case of Lan, the angular velocity in the eye increased by approximately 1.5 times within 1 hr. This short‐term increase is further examined. Visualization of low‐level vorticity in the eye and angular momentum budget analysis suggest that angular momentum transport associated with mesovortices played an important role in the increase of tangential wind and the homogenization of angular velocity in the eye of Lan.
  • Source:
    Journal of Geophysical Research: Atmospheres, 129(9)
  • DOI:
  • ISSN:
    2169-897X;2169-8996;
  • Format:
  • Publisher:
  • Document Type:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1