Estimating Mass Flux From Size‐Fractionated Filtered Particles: Insights Into Controls on Sinking Velocities and Mass Fluxes in Recent U.S. GEOTRACES Cruises
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Estimating Mass Flux From Size‐Fractionated Filtered Particles: Insights Into Controls on Sinking Velocities and Mass Fluxes in Recent U.S. GEOTRACES Cruises

Filetype[PDF-4.49 MB]



Details:

  • Journal Title:
    Global Biogeochemical Cycles
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    We compile full ocean‐depth size‐fractionated (1–51 and >51 μm) particle concentration and composition of suspended particulate matter from three recent U.S. GEOTRACES cruises, and exploit detailed information of particle characteristics measured to give insights into controls on sinking velocity and mass flux. Our model integrates the concept of fractal scaling into Stokes' Law by incorporating one of two porosity‐size power law relationships that result in fractal dimensions of 1.4 and 2.1. The medians of pump‐derived total (>1 μm) mass flux in the upper 100 m of gyre stations are 285.1, 609.2, and 99.3 mg/m2/d in the North Atlantic, Eastern Tropical South Pacific, and Western Arctic Ocean cruises, respectively. In this data set, variations in particle concentration were generally more important than sinking velocity in controlling variations in mass flux. We examine different terms in a Stokes' Law model to explore how variations in particle and water column characteristics from these three cruises affect mass flux. The decomposition of different aspects of the Stokes' relationship sheds light on the lowest total mass flux of the three cruises in the Western Arctic, which could be explained by the Arctic having the lowest particle concentrations as well as the lowest sinking velocities due to having the smallest particle sizes and the most viscous water. This work shows the importance of both particle characteristics and size distribution for mass fluxes, and similar methods can be applied to existing and future size‐fractionated filtered particulate measurements to improve our understanding of the biological pump elsewhere.
  • Source:
    Global Biogeochemical Cycles, 36(4)
  • DOI:
  • ISSN:
    0886-6236;1944-9224;
  • Format:
  • Publisher:
  • Document Type:
  • License:
  • Rights Information:
    CC BY-NC
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1